

CGreenlet Manual

This is the reference manual for cgreenlet. CGreenlet provides an API to work
with coroutines in C and C++.

Contents:

	Introduction

	C API Reference

	C++ API Reference

Introduction

CGreenlet provides an API for working with coroutines in C and C++. The API
is modeled after the Python greenlet API [1].

For some, including me before i made an effort to understand them, coroutines
are a mysterious type of function. In The Art of Computer Programming, Donald
Knuth introduces coroutines as generalizations of subroutines. Instead of
returning to the caller, they can also return to a different coroutine.

That explanation didn’t do it for me. However I think coroutines can be
relatively easy explained in terms of function call stacks. When you call a
function, the called function will return to you. If the function you call,
calls a nested function, that nested function will first return to the
function that called it, which then may return to you as the original caller.
The call history is a stack. Inner functions always pop one level (or “frame”)
off the stack when they return to their calling function. And calling a nested
function will push one level (or “frame”) onto the stack. The stack idea is
actually not just a visualization, it is how virtually all function call ABIs
are implemented.

With the idea of a function call stack in mind, coroutines can be explained as
having multiple call stacks next to each other. Each coroutine corresponds to
one function call stack. Normal function can only move up and down their call
stack. Co-routines however, in addition to moving up and down like regular
functions, can also move sideways to other stacks. Moving sideways is called
“yielding” or “switching”, as opposed to “calling” and “returning” wich moves
up and down. Crucially, when moving sideways to another coroutine, the point
of switching is remembered. And if one of the other coroutines switches back
to the original coroutine, it continues exactly where it was left.

In my view, that is all there is to coroutines. So why are coroutines
useful? It turns out that there are a couple of use cases that are ideally
suited to being solved with coroutines. Two very important ones are:

	Producer / consumer patterns

This happens for example in a scanner / parser. The scanner produces tokens
from an input. The parser consumes tokens from the scanner. And both
functions need context to remember where they are.

Without coroutines, it is normal to implement one of the functions as a
callback that saves state in some area that is preserved between function
calls. However callback programming signifcanlty complicates things because
the program execution is no longer sequential. With coroutines, both the
producer and the consumer can be implemented as sequential functions, that
switch to each other when a token is available (the scanner switches to the
parser) or when a token is needed (the parser switches to the scanner).

	Multiplexed I/O

Multiplexing I/O means handling multiple streams of input and output in a
single process. Traditionally, this can be done by using non-blocking I/O
and select(). This has the drawback that you need to write your application
as callbacks again, which greatly complicates things. Another solution is
to use threads. Threads can use blocking I/O and can therefore implement
sequential program logic. However threads are complicated to get right when
they need to access global state. Also threads need to be managed as they
can eat up system resources quickly.

Co-routines are ideal for doing multiplexed I/O. They allow you to write
sequential code, without having to deal with the complexities of threads.

	[1]	http://pypi.python.org/pypi/greenlet

C API Reference

Greenlet type

The central data structure in the C API is the greenlet_t:

typedef void *(*greenet_start_func_t)(void *);

typedef struct
{
 greenlet_t *gr_parent;
 void *gr_stack;
 long gr_stacksize;
 int gr_flags;
 greenlet_start_func_t gr_start;
 /* private members follow */
} greenlet_t;

Most functions in the cgreenlet library take a greenlet_t as their first
argument.

Creating greenlets

New greenlets are created using the greenlet_new() function:

greenlet_t *greenlet_new(greenlet_start_func_t start_func,
 greenlet_t *parent, long stacksize);

The start_func argument specifies the greenlet’s main function. The parent
argument specifies the greenlet’s parent. If parent is NULL this creates a
greenlet that is a child of the special root greenlet. The stacksize
argument specifies the size of the stack to allocate. If stacksize is 0,
this allocates a stack of a platform specific default size.

Switching between greenlets

A greenlet is started with the “greenlet_switch_to()” function:

void *greenlet_switch_to(greenlet_t *greenlet, void *arg);

The first time this function is called on a greenlet, a new execution context
is created on the stack that was allocated by greenlet_new(), and that
greenlet’s start_func method is called with arg as its argument. The
greenlet will now be in the “STARTED” state.

After the greenlet has been started, it can either return from its main
routine, or switch to another greenlet. If the greenlet returns, the greenlet
is marked as “DEAD”, and execution switches to its parent. If the greenlet
switches to another greenlet, its execution is paused at the point where the
greenlet calls greenlet_switch_to(). Should another greenlet switch back
into this greenlet, then greenlet_switch_to() returns and resumes
execution from that point.

Every greenlet (except the root greenlet) has a parent. If a greenlet was
created with the parent parameter of greenlet_new() set to NULL, the
greenlet is a child of the root greenlet.

When greenlets start up or switch between each other, void * pointers can
be passed that allow you to pass arbitrary data.

Root and current greenlets

Each process has a special greenlet called the root greenlet. The root
greenlet corresponds to the execution context that has been set up by the
Operating System when the process was started. The root greenlet is retrieved
using:

greenlet_t *greenlet_root(void);

Each process also has exactly one current greenlet. The current greenlet is
retrieved using:

greenlet_t *greenlet_current(void);

A greenlet’s parent is retrieved using:

greenlet_t *greenlet_parent(greenlet_t *greenlet);

The only greenlet without a parent is the root greenlet. Calling
greenlet_parent() for the root greenlet returns NULL.

Greenlet states

The state of greenlet is stored in the gr_flags member in the
greenlet_t structure. It is the bitwise OR of the following values:

enum greenlet_flags
{
 GREENLET_STARTED = 0x1,
 GREENLET_DEAD = 0x2
};

Every greenlet except the root greenlet starts in an empty state. Once the
greenlet has been switched to for the first time, it status will have the
GREENLET_STARTED bit set. Once a greenlet’s main function has exited, it
status will have the GREENLET_DEAD bit set. The root greenlet is always in the
GREENLET_STARTED status.

The following two utility functions are provided to retrieve a greenlet’s
state:

int greenlet_isstarted(greenlet_t *greenlet);
int greenlet_isdead(greenlet_t *greenlet);

Terminating greenlets

Greenlets can be terminated in two ways. First, a greenlet can be reset. This
destroys its execution context but keeps the stack allocated. Switching to the
greenlet after it is reset would invoke the greenlet’s start_func again from
the beginning:

void greenlet_reset(greenlet_t *greenlet);

The second way to terminate a greenlet is to destroy it:

void greenlet_destroy(greenlet_t *greenlet);

Destroying a greenlet destroys its execution context and also deallocates its
stack. The greenlet cannot be used anymore.

Thread and Greenlets

Each thread in a process has its own root greenlet and child greenlets. The
cgreenlet library is thread-safe in this respect. Of course you need to make
sure that when you are using multiple threads, that the greenlets in different
threads are properly synchronized if they access shared data. Within a single
thread, synchronization is never required because there is always one and only
one active greenlet. This is actually the key difference between threads and
greenlets.

Injecting code

You can inject a function into a greenlet by using greenlet_inject():

typedef void (*greenlet_inject_func_t)(void *);

void greenlet_inject(greenlet_t *greenlet,
 greenlet_inject_func_t inject_func);

When a function has been injected this way , the injected function will be
called exactly once when switching to the greenlet, just before the point
where execution would normally start or resume. The argument that is passed to
inject_func is the one that will have been passed to the greenlet as well.
If the injected function returns, the greenlet execution will resume as
normal.

Injecting code can be useful in some special error situations or for
debugging. It is also used by the C++ greenlet interface to inject exceptions
from a child into a parent greenlet.

C++ API Reference

The greenlet class

The greenlet class is a wrapper around the greenlet_t structure from the
cgreenlet C API. Before reading this section, make sure you have read the C
API first.

Two constructors and a destructor are provided for the greenlet class:

class greenlet
{
public:
 greenlet(greenlet_start_func_t start_func=0L,
 greenlet *parent=0L, long stacksize=OL);
 greenlet(greenet_t *greenlet);
 ~greenlet();
};

The first constructor creates a new greenlet instance from scratch. All
arguments are optional and have the same measing as in the C API. The second
form creates a greenlet instance from a greenlet_t struct from the C
API. This allows C and C++ greenlets to exist in the same program. The
destructor peforms the same thing as greenlet_destory() in the C API.

Main function

The greenlet’s main function is always its virtual run() method:

protected:
 virtual void *run(void *arg);

The default implementation of run() executes the start_func argument
that was passed to the constructor. You can override run() to embed your
main function in a derived class.

Greenlet methods

Many functions that exist in the C API exist as method on the greenlet
class in the C++ API:

public:
 void *switch_to(void *arg);
 void inject(greenlet_inject_func_t inject_func);
 void reset();

 bool isstarted();
 bool isdead();

Exceptions

Exceptions that are not caught in a greenlet will exit the greenlet’s main
function and move it to the “DEAD” state. When this happens, the exception is
then re-raised in the greenlet’s parent, and the parent’s parent, and so on,
until either it is caught or until the root greenlet is reached. If the root
greenlet does not catch the exception, the C++ program will terminate.

Index

 nav.xhtml

 Table of Contents

 		CGreenlet Manual

 		Introduction

 		C API Reference

 		Greenlet type

 		Creating greenlets

 		Switching between greenlets

 		Root and current greenlets

 		Greenlet states

 		Terminating greenlets

 		Thread and Greenlets

 		Injecting code

 		C++ API Reference

 		The greenlet class

 		Main function

 		Greenlet methods

 		Exceptions

_static/file.png

_static/plus.png

_static/comment.png

_static/down.png

_static/up.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/up-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/minus.png

